Interlacing Eigenvalues and Graphs
نویسندگان
چکیده
We give several old and some new applications of eigenvalue interlacing to matrices associated to graphs. Bounds are obtained for characteristic numbers of graphs, such as the size of a maximal (colclique, the chromatic number, the diameter, and the bandwidth, in terms of the eigenvalues of the Standard adjacency matrix or the Laplacian matrix. We also deal with inequalities and regularity results concerning the structure of graphs and block designs.
منابع مشابه
Interlacing for weighted graphs using the normalized Laplacian
The problem of relating the eigenvalues of the normalized Laplacian for a weighted graph G and G − H, for H a subgraph of G is considered. It is shown that these eigenvalues interlace and that the tightness of the interlacing is dependent on the number of nonisolated vertices of H. Weak coverings of a weighted graph are also defined and interlacing results for the normalized Laplacian for such ...
متن کاملSpectral Results on Some Hamiltonian Properties of Graphs
Using Lotker’s interlacing theorem on the Laplacian eigenvalues of a graph in [5] and Wang and Belardo’s interlacing theorem on the signless Laplacian eigenvalues of a graph in [6], we in this note obtain spectral conditions for some Hamiltonian properties of graphs. 2010Mathematics Subject Classification : 05C50, 05C45
متن کاملEla Interlacing for Weighted Graphs Using the Normalized Laplacian∗
The problem of relating the eigenvalues of the normalized Laplacian for a weighted graph G and G − H, for H a subgraph of G is considered. It is shown that these eigenvalues interlace and that the tightness of the interlacing is dependent on the number of nonisolated vertices of H. Weak coverings of a weighted graph are also defined and interlacing results for the normalized Laplacian for such ...
متن کاملMath 270: Interlacing Families Open Problems
1. Nonbipartite Ramanujan Graphs The result of [MSS15a] shows the existence of bipartite Ramanujan graphs of all degrees by showing that every d−regular graph has a signing (corresponding to a 2-lift) in which all the new eigenvalues are at most 2 √ d− 1. In particular, it does not give a lower bound on the least eigenvalue λn; however, because the eigenvalues of bipartite graphs are symmetric ...
متن کاملGraphs and Hermitian matrices: Exact interlacing
We prove conditions for equality between the extreme eigenvalues of a matrix and its quotient: In particular, we give a lower bound on the largest singular value of a matrix and generalize a result of Finck and Grohmann about the largest eigenvalue of a graph. Keywords: extreme eigenvalues, tight interlacing, graph Laplacian, singular values, nonnegative matrix 1 Introduction Our notation is st...
متن کامل